

CircuitSolver® with Integrated Union (CSU) & Optional Check Valve SUBMITTAL

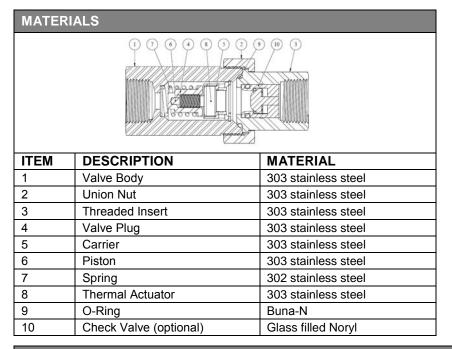
JOB:	ORDER NO:	DATE:		
	SUBMITTED BY:	DATE:		
UNIT TAG:	APPROVED BY:	DATE:		
CITY:	ENGINEER:	BUILDING TYPE:		
STATE:	CONTRACTOR:	CONSTRUCTION TYPE:		
COMPLETION DATE:				

DESCRIPTION

CircuitSolver® is a thermostatic balancing valve that automatically and continuously adjusts flow to maintain the desired temperature in a domestic hot water supply line. Since the CircuitSolver® responds to water temperature to control the flow entering the recirculation line it eliminates the need to manually balance the system. The "CSU" version CircuitSolver® incorporates a union into the body of the valve and offers an optional check valve insert. The union uses an o-ring seal providing the advantage of a hand tightened leak free connection.

DIMENSIONS Diameter (A) Length (B) Weight C, Max. Pressure Max. Temp. Model No. NPT IN MM IN MM LBS. KG OPEN CLOSED PSIG BAR °F °C

		Diame	eter (A)	Leng	th (B)	We	ight		> _v	Max. P	ressure	Max.	Temp.
Model No.	NPT	IN	MM	IN	MM	LBS.	KG	OPEN	CLOSED	PSIG	BAR	°F	°C
CSU- ½ -XXX	1/0"	/2" 1.8	46	3.7	94	1.2	0.5	1.3	0.1		14	250	121
CSU- 1/2 -XXX-CV1	1/2												
CSU- ¾ -XXX	0/4"	3/4" 2.0	E4	51 4.3	110	110 1.9	0.9	1.8 0.7	0.1	0.1 200			
CSU- ¾ -XXX-CV1	3/4		2.0 51						0.1				
CSU-1-XXX	1" 2.5	2.5	2.5 64	4.7	120	3.1	1.4	4 3.3	0.1				
CSU-1-XXX-CV1		2.5											


Model Number Selection

XXX refers to the desired closing temperature. When the water temperature drops below this point the CircuitSolver® will begin to open, allowing water to easily enter the return line. For example, if you want 120°F desired return temperature and the CSU is to be installed on a 3/4" line, the model number would be CSU-3/4-120. To add optional check valve insert –CV1 to the end of the model number. Ex.CSU-3/4-120-CV1

FLOW RATE CALCULATION USING "C _V "	FACTOR FOR WATER	
$GPM = C_V \sqrt{\Delta P}$	$C_V = \frac{GPM}{\sqrt{\Lambda P}}$	$\Delta P = \left[\frac{GPM}{G_V}\right]^2$

IAP	NSF/ANSI	61 and
· MOR&T	Zero Lead	Content
TM	Certified	

Optional Check Valve

Features and Benefits

- -100% factory tested drip tight operation
- -Snap fit design, no retainer needed
- -Extra low head loss and low cracking pressure
- -External o-ring in groove

Certification

-ANSI/NSF 61

ITEM	MATERIAL
Сар	Glass filled Noryl
Guide	Glass filled Noryl
Plunger	Glass filled Noryl
Lip Spring	EPDM rubber
Spring	Stainless steel AISI 301
O-ring	EPDM rubber

Optional Check Valve Technical Data

Medium: Clear water only

Approximate Cracking Pressure: 0.29 psi

TYPICAL SPECIFICATION

- I. Furnish and install CIRCUITSOLVER® as indicated on the plans. CIRCUITSOLVER® shall be self-contained and fully automatic without additional piping or control mechanisms. Valve shall be a CIRCUITSOLVER® as manufactured by ThermOmegaTech®, Inc. or equivalent.
 - A. CIRCUITSOLVER® shall regulate the flow of recirculated domestic hot water based on water temperature entering the CIRCUITSOLVER® regardless of system operating pressure. As the water temperature increases the valve proportionally closes dynamically adjusting flow to meet the specified temperature.
 - 1. CIRCUITSOLVER® never fully closes, even at the desired set point. There is always sufficient bypass flow back to the recirculating pump to prevent overheating or "dead heading" of the pump.
 - 2. CIRCUITSOLVER® is set at the factory for the desired return temperature. No field adjustments. Several temperature set points are available.
- II. CIRCUITSOLVER® body and all internal components are made with lead free materials with major components constructed of type 303 stainless steel.
 - A. CIRCUITSOLVER® shall be rated to 200 PSIG maximum working pressure.
 - 1. All CIRCUITSOLVER® shall be standard tapered female pipe thread, NPT.
 - B. All CIRCUITSOLVER® shall be rated to 250°F (121.1°C) maximum working temperature.
 - C. Thermal actuator shall be spring loaded and self cleaning, delivering closing thrust sufficient to keep orifice opening free of scale deposits.
- III. Installation of CIRCUITSOLVER® shall be made by qualified tradesmen. Install CIRCUITSOLVER® in each domestic hot water return piping branch beyond last hot water device in that branch.
 - A. Provide suitable line size isolation valves, unions, and strainer as indicated in piping detail shown on the drawings.
 - B. Provide suitable access panel as required in non-accessible ceilings and walls.
 - C. Pay close attention to flow arrow, especially with valves that have an integrated check valve.

